
Fermilab FERMILAB-Pub-00/052-T REVISED October 2000

Chaotic Mixing in Charged-Particle Beams

Courtlandt L. Bohn

Fermilab, Batavia, IL 60510-0500

(October 12, 2000)

Abstract

For a charged-particle bunch with external focusing and internal space charge

that together produce globally chaotic orbits, the e-folding time by which

an initially localized ensemble of chaotic orbits irreversibly disperses glob-

ally through the bunch is estimated. The density distribution determines

how rapidly this mixing, with associated macroscopic changes in the bunch

structure, proceeds. The theory also applies to self-gravitating systems; it is

tested against recent simulations of chaotic mixing in elliptical galaxies having

a massive black hole at their centroids.
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Rapid irreversible dynamics is a practical concern in producing high-brightness charged-

particle beams. Time scales of irreversible processes place constraints on methods for com-

pensating against degradation of beam quality caused by, for example, space charge in high-

brightness injectors [1] or coherent synchrotron radiation in accelerators that power modern

free-electron lasers [2]. Compensation needs to be fast compared to active irreversible pro-

cesses, which in turn affects the choice and configuration of the associated hardware.

A beam bunch with space charge comprises an N-body system with typically 3N degrees

of freedom. The particle trajectories are generically chaotic due, at minimum, to granularity

in the space-charge potential. Through a process known as “chaotic mixing” [3], an initially

localized ensemble of chaotic orbits will grow exponentially and eventually diffuse through

its accessible phase space, reaching an invariant distribution. The process is irreversible

in the sense that infinitesimal fine-tuning is needed to reassemble the initial conditions. It

is also distinctly different from phase mixing, a process that winds an initially localized

ensemble into a filament over a comparatively narrow region of phase space, and that is

in principle reversible. Whereas chaotic mixing proceeds exponentially over a well-defined

time scale and causes global, macroscopic changes in the system, phase mixing carries an

algebraic time dependence, proceeds on a time scale depending on the distribution of orbital

frequencies across the ensemble, and acts only over a portion of the phase space.

Chaotic mixing may or may not be rapid. For example, simulations of large self-

gravitating N-body systems in which the smoothed density is constant over a stationary

ellipsoidal volume show that the orbits, though they are chaotic, behave for very long times

as if they were regular [4]. These simulations, however, also reveal that adding a density

cusp and/or inserting a massive black hole at the centroid can greatly accelerate chaotic

mixing, driving it to completion within a few orbital periods. The process tends to make

the distribution of stars more isotropic [5], reminiscent of equipartitioning in beams. In

short, structure in the density distribution of a self-gravitating system can lead to rapid

chaotic mixing by increasing the degree of chaoticity of the orbits.

By analogy, one might conjecture that structure in the density distribution of a self-
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interacting beam can likewise lead to rapid chaotic mixing. One example is the University of

Maryland five-beamlet experiment that showed irreversible dissipation of the beamlets after

a few space-charge-depressed betatron periods [6]. Simulations of the experiments revealed

a substantial fraction of globally chaotic orbits [7], and chaotic mixing thereby presents

itself as a possible mechanism. Moreover, rapid irreversible mixing is also seen in recent

simulations of merging multiple beamlets in accelerators for heavy-ion fusion [8]. In any

case, ascertaining conditions that lead to rapid chaotic mixing in beams is an undertaking

of practical importance.

The past few years have seen development of a geometric method proposed by M. Pettini

to quantify chaotic instability in Hamiltonian systems with many degrees of freedom. The

central idea is to describe the dynamics in terms of average curvature properties of the

manifold in which the particle orbits are geodesics. The method hinges on the following

assumptions and approximations, which are discussed thoroughly in Ref. [9]: (1) a generic

geodesic is chaotic; (2) the manifold’s effective curvature is locally deformed but otherwise

constant; (3) the effective curvature reflects a gaussian stochastic process; and (4) long-

time-averaged properties of the curvature are calculable as phase-space averages over an

invariant measure, specifically, the microcanonical ensemble. The gaussian process is the

zeroth-order term in a cumulant expansion of the actual stochastic process; assumption

(3) is that the zeroth-order term suffices. The end result relates chaotic instability to the

geometric properties of the manifold defined by the long-time-averaged orbits. Though the

assumptions and approximations lack universal validity and are difficult to prove rigorously

for a given system, they nonetheless would seem to offer a reasonable basis for identifying

conditions that can produce rapid chaotic mixing. Our goal here is to apply the method of

Ref. [9] to infer an analytic expression for the mixing time, first in a stationary beam bunch

with space charge, and second in a family of self-gravitating systems for comparison to the

aforementioned simulations.

Action principles in classical mechanics are tantamount to extremals of “arc lengths”;

thus, one can infer a metric tensor from an action principle [10]. The metric tensor manifests
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all of the properties of the manifold over which the system evolves, with these properties

being calculable following standard principles of differential geometry. Of special interest is

the divergence of two initially nearby 3N-dimensional geodesics q and q + δq as governed

by the equation of geodesic deviation:

D2δqα

ds2
+Rα

βγδ
dqβ

ds
δqγ

dqδ

ds
= 0, (1)

in which D/ds denotes covariant differentiation with respect to the “proper time” s, Rα
βγδ is

the Riemann tensor derivable from the metric tensor, and summation over repeated indices

is implied with each index spanning the 3N degrees of freedom. Equation (1) is the basis

for determining the mixing rate λ as a measure of the system’s largest Lyapunov exponent,

a quantity that reflects the long-time behavior of the separation vector:

λ = lim
t→∞

1

t
ln
|δq(t)|
|δq(0)| . (2)

Any number of action principles, and therefore any number of metric tensors, can

be selected to proceed further. Eisenhart’s metric [11], which is consistent with Hamil-

ton’s least-action principle, is probably the most convenient choice. It offers easy cal-

culation of the Riemann tensor, and it avoids spurious results traceable to the singu-

lar boundary of the perhaps better-known Jacobi metric that is derivable from Mauper-

tius’ least-action principle [12]. Eisenhart’s metric operates over an enlarged configura-

tion space-time manifold in which the geodesics are parameterized by the real time t, i .e.,

ds2 = dt2 = −2V (q)(dq0)2 + δijdqidqj + 2dq0dq3N+1, in which V (q) is the potential energy

per unit mass (hereafter called the “potential”), δij (with the indices i, j running from 1 to

3N) is the unit tensor corresponding (without loss of generality) to a cartesian spatial coor-

dinate system, q0 = t, q3N+1 = t/2−
∫ t
0 dt

′L(q, q̇), and L is the Lagrangian. The resulting

geodesic equations for the spatial coordinates qi are Newton’s equations of motion, so the

particle trajectories correspond to a canonical projection of the Eisenhart geodesics onto the

configuration space-time manifold. A convenient byproduct of the Eisenhart metric is that

the only nonzero components of the Riemann tensor are R0i0j = ∂i∂jV , in which ∂i = ∂/∂qi.
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Using the aforementioned assumptions and approximations, Pettini and others [9,13]

derive an expression for λ in terms of the curvature and its standard deviation averaged

over the microcanonical ensemble. The idea is that, as t→∞, chaotic orbits of total energy

E mix through the configuration space toward an invariant measure, taken per assumption

(4) to be the microcanonical ensemble δ(H−E), over which time averages become equivalent

to phase-space averages. Specifically, for an arbitrary function A(q), the averaging process

is

〈A〉 ≡ lim
t→∞
〈A〉t =

∫
dq
∫
dq̇ A(q)δ[H(q, q̇)− E]∫

dq
∫
dq̇ δ[H(q, q̇)− E]

. (3)

Per Eisenhart’s metric, the average curvature and standard deviation are, respectively,

κ =
〈∆V 〉

3N − 1
, σ =

√
〈(∆V )2 − 〈∆V 〉2〉

3N − 1
, (4)

in which ∆ denotes the Laplacian ∂i∂i. Pettini et. al.’s method yields

λ(ρ) =
1√
3

L2(ρ)− 1

L(ρ)

√
κ;

L(ρ) =
[
T (ρ) +

√
1 + T 2(ρ)

]1/3

, T (ρ) =
3π
√

3

8

ρ2

2
√

1 + ρ + πρ
; (5)

in which ρ ≡ σ/κ, a quantity that measures the ratio of the average curvature radius to the

length scale of fluctuations [14]. For small ρ, λ/κ1/2 scales as ρ2, and for large ρ it scales as

ρ1/3.

The geometric quantities derive from the 6N-dimensional microcanonical ensemble. An-

ticipating that granularity takes a long time to affect mixing, and wishing to identify con-

ditions for rapid mixing, we now consider the influence of the 3-dimensional coarse-grained

space-charge potential Vs on a generic chaotic orbit. We presume the assumptions and

approximations stated at the outset carry over to the coarse-grained system; when they

do not, chaotic mixing will normally be too slow to be of concern. We take the exter-

nal focusing potential Vf to be quadratic in the coordinates x comoving with the bunch,

i .e., Vf (x) = (ω2
xx

2 + ω2
yy

2 + ω2
zz

2)/2; the total potential is V = Vf + Vs. Per Eq. (4)

and Poisson’s equation the quantities κ and σ are determined from ∇2V = ω2
f − ω2

p(x), in
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which ω2
f = ω2

x + ω2
y + ω2

z , ω
2
p(x) = n(x)e2/(εom), n(x) is the (smoothed) particle density,

e and m are the single-particle charge and mass, respectively, and εo is the permittivity of

free space. With ωp0 ≡ ωp(0), the results may be expressed conveniently in terms of the

space-charge-depressed focusing strength ω2
s = ω2

f −ω2
p0 and the normalized particle density

ν(x) = n(x)/n(0) as κ = (ω2
p0/2) [(ωs/ωp0)2 + 1− 〈ν〉], σ = ω2

p0

√
(〈ν2〉 − 〈ν〉2)/2. Inserting

these results into Eq. (5) gives the associated time scale, tm ≡ 1/λ, for irreversible chaotic

mixing. When the standard deviation of the density distribution is large, as can be the case

when substructure is present, ρ will be appreciable, and in turn Eq. (5) makes clear that

tm will be a few space-charge-depressed betatron periods. This is consistent with, e.g., the

aforementioned University of Maryland experiment showing irreversible dissolution of both

matched and mismatched 5-beamlet configurations over a few depressed betatron periods [6].

The aforementioned studies in galactic dynamics permit a quantitative test of the theory.

Simulations of chaotic mixing in galaxies consisting of a homogeneous ellipsoid with a density

cusp and/or a massive black hole at its centroid have recently been done, such as those of

Siopis and Kandrup [15] (hereafter SK) and Valluri and Merritt [4] (hereafter VM). SK show

that these simulations can be considered in the context of a simple “toy” potential, namely

V (q) =
1

2

(
x2

a2
+
y2

b2
+
z2

c2

)
− M√

r2 + ε2
, (6)

wherein M denotes the black-hole mass, ε is a parameter that softens close encounters with

the black hole, and the semiaxes are a = 2/
√

3, b = 1, c = 2/
√

5. The density and mass

of the homogeneous ellipsoid are, respectively, 3/(4π) and 4/
√

15 ' 1. The simulations

start with an ensemble of test particles, each having zero initial velocity, distributed over

a localized portion of an equipotential of energy E. The particles respond to the potential

and do not interact with each other. SK discuss the ensemble’s distribution of Lyapunov

exponents, and VM discuss the e-folding time of the expansion of the ensemble due to chaotic

mixing. Whereas SK explicitly use the toy potential for their simulations that are discussed

below, VM’s potential has an additional shallow density cusp at the centroid. Following

SK’s suggestion, we still use the toy potential to interpret VM’s results.
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Phase-space averages are straightforwardly evaluated per Eq. (3), e.g., by first doing the

easy integral over velocity space, then rewriting the new integrands in terms of confocal

ellipsoidal coordinates, and finally integrating over the volume of the ellipsoid. It turns out

that κ and σ are mathematically insensitive to the ellipsoidal geometry, i.e., to the ellipticity,

and spherically symmetric models of the integrands give essentially the same results. This

simplification facilitates developing the following closed-form approximation for the mixing

time tm that reveals the parametric scaling with black-hole mass M and particle energy E:

tm =
3
√

3

2T (ρ)
√
κ

; ρ =
3
√

5

213/4

M

κε3/2E3/4
, κ =

3πE3/2 + 4
√

2M

2πE3/2
, (7)

and T (ρ) is as given in Eq. (5). SK explicitly list the particle energies E in their ensembles.

VM start their ensembles on equipotentials enclosing a mass of the ellipsoid without the

black hole that is approximately a multiple n = 3, 7, 17 of the black-hole mass; corresponding

energies for use with the toy potential may be estimated from a spherically symmetric model

of the potential as En ' [(n/2) − 1](M2/n)1/3.

Theoretical mixing times τth, calculated from Eq. (7) with the softening parameter set

at ε = 0.16 (for reasons discussed below), are given in Table 1. Per VM’s convention, the

mixing times are normalized to each ensemble’s crossing time tc, i .e., τ ≡ tm/tc, with tc

defined as half the orbital period along the semimajor axis as calculated from the potential

in the absence of the black hole. For the toy potential, the crossing time is, accordingly,

tc = πa = 2π/
√

3. Normalized mixing times τsim deriving from the simulations are also

given in Table 1. Those quoted for SK derive from their Fig. 19 and correspond to the peaks

in the distributions of Lyapunov exponents for the respective ensembles. Those quoted for

VM derive from their Fig. 4. For their lowest-energy ensemble, VM state that the linear

extent of the points in configuration space doubles roughly each crossing time until the

ensemble has essentially filled its accessible volume. The associated e-folding time is thus

τ ' 1/ ln 2 = 1.4, and VM’s Fig. 4 shows the mixing times for the other two ensembles are

factors of ∼ 13/8 and ∼ 24/8 larger.

The normalized mixing times calculated from theory track those inferred from the sim-
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ulations over the considerable range of parameters reflected in Table 1. Moreover, VM find

that mixing becomes markedly slower as the black-hole mass is reduced below M ∼ 0.01,

another quantitative result that Eq. (7) reproduces. These findings point to the theory’s

utility and also imply that the normalized mixing time is insensitive to minor refinements

in the potential, such as VM’s shallow density cusp. However, there is an important lim-

itation: the theory depends on a “free parameter”, namely the softening parameter ε, the

presence of which reflects uncertainty about the detailed dynamical properties of the phase

space. As concerns the toy potential, one knows a priori that far from M it is approximately

quadratic in the coordinates, and close to M it is approximately spherically symmetric; the

orbits are accordingly quasiregular in these regions wherein there will be almost no chaotic

mixing. The theory correctly predicts zero mixing in a harmonic-oscillator potential, thereby

incorporating the former circumstance, but it also incorrectly predicts nonzero mixing in a

spherically symmetric potential like that close to M . Thus, a nonzero ε “regularizes” orbits

near the black hole. The parametric scaling of τth is insensitive to ε, but its magnitude is

sensitive, and the choice ε = 0.16 gives magnitudes consistent with those of the simulations.

As concerns charged-particle beams, establishing general criteria by which space charge

induces globally chaotic orbits is a goal of contemporary work. When chaotic mixing is

active, structure in the density distribution determines how rapidly it progresses. Produc-

tion of high-brightness beams may lead to transient, localized density peaks, as has been

seen, e.g., during bunch compression [16] and in merging multiple beamlets [6,8]. Thus,

an accelerator designer who cannot know a priori the detailed bunch structure will want

to ensure that emittance compensation is completed within roughly a plasma period to be

confident that irreversible mixing will not spoil the compensation. This criterion translates

into permissible beamline locations and maximum lengths that the associated hardware can

occupy [17].

Because it is based on the Eisenhart metric, the present treatment is restricted to sta-

tionary systems. However, with a Finsler metric, the geometric method can also incorporate

potentials that are explicitly time-dependent and/or velocity-dependent [18]. For example,
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recent work involving the Hénon-Heiles potential [19] resulted in a geometric measure of

chaos over the associated Finsler manifold that was used for fast computation of the sys-

tem’s Poincaré surface of section. By analogy, one is led to suspect that this technique

may likewise yield efficient calculation of dynamic apertures in circular machines in which

magnet nonlinearities, and perhaps beam-beam interactions, gradually degrade the beam.

The principal advantage would be circumvention of very long integration times and their at-

tendant numerical difficulties. If used with a coarse-grained potential, the Eisenhart metric

includes no mechanism for changing the particle energies and thereby excludes important

processes such as violent relaxation and attendant halo formation [20]. In principle, they

can be included with a Finsler metric based on a time-dependent coarse-grained potential;

however, the generalization also requires specifying a suitable invariant measure for the

nonequilibrium system [21].
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TABLES

Table 1. Galactic Mixing Times: Theory vs. Simulation

Authors M E τth τsim

SK 10−3/2 0.044 1.4 1.4

SK 0.01 0.065 5.2 5.5

VM 0.03 0.033 1.4 1.4

VM 0.03 0.13 2.2 2.3

VM 0.03 0.28 4.2 4.3
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